OBJECTIVE: To determine whether the radiomic features of lung lesions on computed tomography correlate with overall survival in lung cancer patients.
MATERIALS AND METHODS: This was a retrospective study involving 101 consecutive patients with malignant neoplasms confirmed by biopsy or surgery. On computed tomography images, the lesions were submitted to semi-automated segmentation and were characterized on the basis of 2,465 radiomic variables. The prognostic assessment was based on Kaplan–Meier analysis and log-rank tests, according to the median value of the radiomic variables.
RESULTS: Of the 101 patients evaluated, 28 died (16 dying from lung cancer), and 73 were censored, with a mean overall survival time of 1,819.4 days (95% confidence interval [95% CI]: 1,481.2–2,157.5). One radiomic feature (the mean of the Fourier transform) presented a difference on Kaplan–Meier curves (
p < 0.05). A high-risk group of patients was identified on the basis of high values for the mean of the Fourier transform. In that group, the mean survival time was 1,465.4 days (95% CI: 985.2–1,945.6), with a hazard ratio of 2.12 (95% CI: 1.01–4.48). We also identified a low-risk group, in which the mean of the Fourier transform was low (mean survival time of 2,164.8 days; 95% CI: 1,745.4–2,584.1).
CONCLUSION: A radiomic signature based on the Fourier transform correlates with overall survival, representing a prognostic biomarker for risk stratification in patients with lung cancer.
Keywords: Tomography, X-ray computed; Radiographic image interpretation, computer-assisted; Lung neoplasms; Prognosis.